organic compounds

7)

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Hydroxy-2-methyl-4H-pyran-4-one

Muhammad Ashraf Shaheen,^a Christian G. Hartinger,^b M. Nawaz Tahir,^c* Ahmad Awan Shafiq^d and Bernhard K. Keppler^b

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, ^bInstitute of Inorganic Chemistry, University of Vienna, Whaeringer Strasse 42, A-1090 Vienna, Austria, ^cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^dPAEC, PO Box No. 1114, Islamabad, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 25 January 2009; accepted 26 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.131; data-to-parameter ratio = 17.3.

The title compound, $C_6H_6O_3$, is a member of the pyrone family. The molecules are planar (r.m.s. deviation of the asymmetric unit is 0.0248 Å, whereas that of the dimer is 0.0360 Å) and they are dimerized due to intermolecular O-H···O hydrogen bonds. The dimers are connected to each other through hydrogen bonds involving the CH₃ group and the hydroxy O atom. There are π - π interactions between the centroids of the pyrone rings at a distance of 3.8552 (13) Å. A C-H··· π interaction also exists between the carbonyl group and the centroid *CgA* of the pyrone ring, with O···*CgA* = 3.65 (1) Å and C···*CgA* = 4.363 (2) Å.

Related literature

For general background, see: Aytemir *et al.* (1999); Erol & Yulug (1999). For studies involving metal complexes of allomaltol, see: Ma *et al.* (2004); Shaheen *et al.* (2008, 2008*a*). For crystal structures of related compounds, see: Tak *et al.* (1994); Rahman *et al.* (1997).

Experimental

Crystal data $C_6H_6O_3$ $M_r = 126.11$

Triclinic, $P\overline{1}$ a = 5.4467 (4) Å

b = 7.5501(5) 11	L = L
c = 7.6945 (5) Å	Mo $K\alpha$ radiation
$\alpha = 105.354 \ (3)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 98.416 \ (4)^{\circ}$	T = 296 (2) K
$\gamma = 100.008 \ (4)^{\circ}$	$0.22 \times 0.20 \times 0.10 \text{ mm}$
$V = 285.68 (4) \text{ Å}^3$	
Data collection	
Bruker Kappa APEXII CCD	6426 measured reflections
diffractometer	1504 independent reflections
	713 reflections with $L > 2\sigma(I)$
Absorption correction: multi-scan	/15 reflections with $I > 20(1)$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$R_{\rm int} = 0.045$

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.131$	independent and constrained
S = 1.00	refinement
1504 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
87 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

L 7 2201 (5) Å

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2 - H2 \cdots O3 \\ O2 - H2 \cdots O3^{i} \\ C6 - H6A \cdots O2^{ii} \end{array}$	0.87 (3)	2.46 (2)	2.7853 (19)	103.1 (18)
	0.87 (3)	1.83 (3)	2.635 (2)	152 (2)
	0.96	2.42	3.378 (3)	173

Symmetry codes: (i) -x - 1, -y, -z + 1; (ii) x, y, z - 1; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2715).

References

Aytemir, M. D., Uzbay, T. & Erol, D. D. (1999). Drug Res. 49, 250-254.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Erol, D. D. & Yulug, N. (1999). Eur. J. Med. Chem. 29, 893-895.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ma, Y., Luo, W., Quinn, P. J., Liu, Z. & Hider, R. C. (2004). J. Med. Chem. 47, 6349–6362.
- Rahman, A., Nasreen, A., Akhtar, F., Shekhani, M. S., Clardy, J., Parvez, M. & Choudhary, M. I. (1997). J. Nat. Prod. 60, 472–474.

Shaheen, M. A., Berger, I., Alexey, A. N., Hartinger, C. G., Koroteev, M. P., Nifant, E. E. & Keppler, B. K. (2008). *Chem. Biodivers.* 5, 1640–1644.

Shaheen, M. A., Kandioller, W., Maria-Grazia, M. F., Alexey, A. N., Hartinger, C. G. & Keppler, B. K. (2008a). Chem. Biodivers. 5, 2060–2066.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tak, H., Fronczek, F. R. & Fischer, N. H. (1994). Spectrosc. Lett. 27, 1431– 1435.

supplementary materials

Acta Cryst. (2009). E65, o437 [doi:10.1107/S1600536809003158]

5-Hydroxy-2-methyl-4H-pyran-4-one

M. A. Shaheen, C. G. Hartinger, M. N. Tahir, A. A. Shafiq and B. K. Keppler

Comment

A variety of compounds with a 4(1H)-pyridinone structure have been synthesized and their biological activities studied extensively (Aytemir *et al.*, 1999; Erol & Yulug, 1999). Allomaltol, the title compound (I), (Fig. 1) and its derivatives have been exploited as iron chelators (Ma *et al.*, 2004). Ruthenium and osmium complexes of allomaltol were found to be effective in catalyzing the hydration of chloroacetonitriles (Shaheen *et al.*, 2008, 2008*a*).

The crystal structures of 3-Hydroxy-4-pyrone (Tak *et al.*, 1994) has been published which have same heterocyclic ring as of title compound. 3-Hydroxy-2-methyl-4*H*-pyran-4-one (Rahman *et al.*, 1997) has also been published which is chemical isomer of (I) but have different position of CH₃. The title compound has been prepared for various purposes such as complexation and as an intermediate ligand.

The heterocyclic ring is not regular as it has two C—C [1.426 (3), 1.446 (3) Å], two C=C [1.323 (3), 1.334 (3) Å] and two C—O [1.352 (3), 1.358 (3) Å], bonds respectively. Due to intra as well as intermolecular H-bonds (Table 1), the molecules are dimerized with central four-membered [O···H···O···H] ring, (Fig. 2). The dimers are linked to each other through H-bond between CH₃ and hydroxy groups. The molecules may be stabilized due to π - π interaction between the centroids of the ring A (O1/C1–C5). The distance between the centroids of CgA and CgAⁱ [Symmetry code: i = -x, 1 - y, 1 - z] is 3.8552 (13) Å. There exist a C3=O3··· π interaction (Table 1), as well.

Experimental

A mixture of 2-chloromethyl-5-hydroxy-4-pyron (1.0 g, 0.6 mmol) and zinc dust (0.8 g, 12 mmol) in water (20 ml) was stirred for 30 min at 323 K. Concentrated HCl (6 ml) was added dropwise to dissolve the zinc dust completely and the mixture was stirred for 3 h at 353 K. The reaction mixture was transferred to ice–water and extracted with dichloromethane, dried with anhydrous Na₂SO₄ and evaporated to dryness. The crystals of the title compound were obtained by recrystallizing the crude product in isopropanol.

Refinement

The coordinates of H atom of hydroxy group were refined. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.5 for methyl H, and x = 1.2 for other H atoms.

Figures

Fig. 1. *ORTEP* drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H atoms are shown by small circles of arbitrary radii.

Fig. 2. The packing figure (*PLATON*: Spek, 2003) which shows that the title compound is dimersed and dimers are connected through H-bonds in helical way.

(I)

Crystal data

C ₆ H ₆ O ₃	Z = 2
$M_r = 126.11$	$F_{000} = 132$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.466 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.4467 (4) Å	Cell parameters from 1504 reflections
b = 7.3301 (5) Å	$\theta = 2.8 - 29.1^{\circ}$
c = 7.6945 (5) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 105.354 \ (3)^{\circ}$	T = 296 (2) K
$\beta = 98.416 \ (4)^{\circ}$	Prismatic, colourless
$\gamma = 100.008 \ (4)^{\circ}$	$0.22 \times 0.20 \times 0.10 \text{ mm}$
$V = 285.68 (4) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII CCD diffractometer	1504 independent reflections
Radiation source: fine-focus sealed tube	713 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
Detector resolution: 7.40 pixels mm ⁻¹	$\theta_{max} = 29.1^{\circ}$
T = 296(2) K	$\theta_{\min} = 2.8^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.970, \ T_{\max} = 0.986$	$l = -10 \rightarrow 10$
6426 measured reflections	

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 0.0219P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.131$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
1504 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
87 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.053 (14)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.2557 (3)	0.3634 (2)	0.37275 (16)	0.0542 (5)
O2	-0.1534 (3)	0.1916 (2)	0.64758 (18)	0.0641 (6)
O3	-0.4440 (3)	0.0215 (2)	0.29282 (18)	0.0631 (6)
C1	0.1595 (4)	0.3242 (3)	0.5153 (3)	0.0554 (8)
C2	-0.0705 (4)	0.2171 (3)	0.4961 (3)	0.0467 (7)
C3	-0.2315 (4)	0.1292 (3)	0.3153 (3)	0.0455 (7)
C4	-0.1223 (4)	0.1770 (3)	0.1711 (3)	0.0486 (7)
C5	0.1096 (4)	0.2896 (3)	0.2016 (3)	0.0463 (7)
C6	0.2424 (4)	0.3492 (4)	0.0642 (3)	0.0624 (8)
H1	0.26084	0.37532	0.63280	0.0664*
H2	-0.299 (5)	0.111 (4)	0.628 (3)	0.0769*
H4	-0.21633	0.12780	0.05123	0.0584*
H6A	0.13508	0.29403	-0.05590	0.0936*
H6B	0.28060	0.48817	0.09427	0.0936*
H6C	0.39779	0.30418	0.06523	0.0936*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å	۴²)
--	----	---

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0501 (9)	0.0655 (10)	0.0377 (8)	-0.0005 (7)	-0.0002 (6)	0.0131 (7)
02	0.0703 (11)	0.0723 (12)	0.0356 (8)	-0.0115 (9)	0.0030 (7)	0.0143 (8)

supplementary materials

03	0.0506 (10)	0.0853 (12)	0.0440 (8)	-0.0041(9)	0.0051 (7)	0.0182 (8)
C1	0.0612 (15)	0.0605 (15)	0.0346 (10)	0.0001 (12)	-0.0004(10)	0.0117 (10)
C2	0.0540 (14)	0.0473 (13)	0.0343 (10)	0.0071 (11)	0.0035 (9)	0.0101 (9)
C3	0.0410 (13)	0.0519 (14)	0.0391 (11)	0.0078 (11)	0.0038 (9)	0.0099 (9)
C4	0.0457 (13)	0.0612 (15)	0.0327 (9)	0.0077 (11)	0.0027 (9)	0.0089 (10)
C5	0.0454 (13)	0.0544 (14)	0.0343 (10)	0.0090 (11)	0.0033 (9)	0.0091 (9)
C6	0.0547 (14)	0.0819 (17)	0.0488 (12)	0.0074 (12)	0.0110 (10)	0.0210 (12)
Geometric paran	neters (Å, °)					
O1—C1		1.358 (3)	C4	C5	1.33	34 (3)
O1—C5		1.352 (3)	C5-	C6	1.48	30 (3)
O2—C2		1.356 (3)	C1-	-H1	0.93	300
O3—C3		1.243 (3)	C4-	-H4	0.93	300
O2—H2		0.87 (3)	С6-	-H6A	0.96	500
C1—C2		1.323 (3)	C6-	-H6B	0.96	500
C2—C3		1.446 (3)	C6-	-Н6С	0.96	500
C3—C4		1.426 (3)				
O1…O3 ⁱ		3.200 (2)	C2··	·O1 ⁱⁱⁱ	3.35	50 (3)
O1…O1 ⁱⁱ		3.078 (2)	C2	·O2 ^{vi}	3.40	05 (3)
O1…C2 ⁱⁱⁱ		3.350 (3)	C2	·C1 ⁱⁱⁱ	3.50	01 (3)
02…03		2.7853 (19)	C2··	·C2 ^{vi}	3.41	5 (3)
O2···C6 ^{iv}		3.378 (3)	С6…	·O2 ^{ix}	3.37	78 (3)
O2…O3 ^v		2.635 (2)	С3…	·H2 ^v	3.00) (3)
$O2 \cdots C2^{vi}$		3.405 (3)	C4··	·H6C ^{vii}	3.00	000
$O3 \cdots O2^{v}$		2.635 (2)	Н2…	·O3	2.46	5 (2)
O3…O1 ^{vii}		3.200 (2)	Н2…	·O3 ^v	1.83	3 (3)
O3…O2		2.7853 (19)	Н2…	·C3 ^v	3.00) (3)
O2…H6B ⁱⁱⁱ		2.9000	H4··	·H6A	2.45	500
O2…H6A ^{iv}		2.4200	H4··	·O3 ^{viii}	2.82	200
O3…H2		2.46 (2)	H6A	····O2 ^{ix}	2.42	200
$O3 \cdots H2^{v}$		1.83 (3)	H6A	A····H4	2.45	500
O3…H4 ^{viii}		2.8200	H6E	····O2 ⁱⁱⁱ	2.90	000
C1…C1 ⁱⁱⁱ		3.387 (3)	H6C	C···C4 ⁱ	3.00	000
C1···C2 ⁱⁱⁱ		3.501 (3)				
C1—O1—C5		118.57 (18)	01–	C5C4	121	.3 (2)
С2—О2—Н2		116.2 (15)	01–	C1H1	118	.00
O1—C1—C2		123.6 (2)	C2-	C1H1	118	.00
O2—C2—C3		120.55 (19)	С3—	C4H4	119	.00
C1—C2—C3		120.2 (2)	C5-	-С4—Н4	119	.00
O2—C2—C1		119.3 (2)	C5-	-С6—Н6А	109	.00
O3—C3—C4		124.7 (2)	C5-	-С6—Н6В	109	.00
C2—C3—C4		113.9 (2)	C5-	-С6—Н6С	109	.00
O3—C3—C2		121.4 (2)	H6A	А—С6—Н6В	109	.00
C3—C4—C5		122.5 (2)	H6A	A—C6—H6C	109	.00

supplementary materials

O1—C5—C6	111.28 (19)	H6B—C6—H6C	109.00
C4—C5—C6	127.5 (2)		
C5—O1—C1—C2	0.0 (3)	C1—C2—C3—O3	177.0 (2)
C1C5C4	-1.4 (3)	C1—C2—C3—C4	-2.6 (3)
C1-01-C5-C6	179.1 (2)	O3—C3—C4—C5	-178.3 (2)
01—C1—C2—O2	-177.69 (19)	C2—C3—C4—C5	1.3 (3)
O1—C1—C2—C3	2.0 (4)	C3—C4—C5—O1	0.7 (4)
02—C2—C3—O3	-3.3 (3)	C3—C4—C5—C6	-179.9 (2)
O2—C2—C3—C4	177.2 (2)		

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y, z+1; (v) -x-1, -y, -z+1; (vi) -x, -y, -z+1; (vii) x-1, y, z; (viii) -x-1, -y, -z; (ix) x, y, z-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2···O3	0.87 (3)	2.46 (2)	2.7853 (19)	103.1 (18)
O2—H2···O3 ^v	0.87 (3)	1.83 (3)	2.635 (2)	152 (2)
C6—H6A···O2 ^{ix}	0.9600	2.4200	3.378 (3)	173.00
C3—O3···CgA ^{vii}	1.243 (3)	3.6465 (19)	4.363 (2)	117.56 (13)

Symmetry codes: (v) -x-1, -y, -z+1; (ix) x, y, z-1; (vii) x-1, y, z.

Fig. 1

